

DPP-4

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/80

Video Solution on YouTube:-

Written Solution on Website:-
https://youtu.be/4KUSsHiMAS4
https://physicsaholics.com/note/notesDetalis/17

Q 1. A fly wheel rotating about a fixed axis has a kinetic energy of 360 J . When its angular speed is $30 \mathrm{rad} / \mathrm{s}$. The moment of inertia of the wheel about the axis of rotation is
(a) $0.6 \mathrm{~kg}-\mathrm{m}^{2}$
(b) $0.15 \mathrm{~kg}-\mathrm{m}^{2}$
(c) $0.8 \mathrm{~kg}-\mathrm{m}^{2}$
(d) $0.75 \mathrm{~kg}-\mathrm{m}^{2}$

Q 2. A wheel is rotating with an angular speed $20 \mathrm{rad} / \mathrm{s}$. It is stopped to rest by applying constant torque in 4 s . If the moment of inertia of the wheel about is axis is 0.20 kg m^{2}, then the magnitude of work done by the torque in two seconds will be :
(a) 10 J
(b) 20 J
(c) 30 J
(d) 40 J

Q 3. Moment of inertia of a ring is $3 \mathrm{~kg}-\mathrm{m}^{2}$. It is rotated for 20 s from its rest position by a torque of $6 \mathrm{~N}-\mathrm{m}$. Calculate the work done
(a) 36 J
(b) 800 J
(c) 1500 J
(d) 2400 J

Q 4. A flywheet is in the form of a uniform circular disc of radius 1 m and mass 2 kg . The work which must be done on it to increase its frequency of rotation from $5 \mathrm{rev} / \mathrm{s}$ to 10 rev/s is approximately
(a) 150 J
(b) 300 J
(c) 1500 J
(d) 3000 J

Q 5. Energy of 1000 J is spent to increase the angular speed of a wheel from $20 \mathrm{rad} / \mathrm{s}$ to $30 \mathrm{rad} / \mathrm{s}$. Calculate the moment of inertia of the wheel.
(a) $4 \mathrm{~kg}-\mathrm{m}^{2}$
(b) $400 \mathrm{~kg}-\mathrm{m}^{2}$
(c) $80 \mathrm{~kg}-\mathrm{m}^{2}$
(d) $300 \mathrm{~kg}-\mathrm{m}^{2}$

Q 6. If the angular momentum of a body increases by 50%, its kinetic energy of rotation increases by
(a) 50%
(b) 25%
(c) 125%
(d) 100%

Q 7. A flywheel of moment of inertia $5.0 \mathrm{~kg} \mathrm{~m}{ }^{2}$ is rotated at a speed of $60 \mathrm{rad} / \mathrm{s}$. Because of the friction at the axle, it comes to rest in 5.0 minutes. Find the average torque of the friction and the magnitude of angular momentum of the wheel 1 minute before it stops rotating
(a) $1 \mathrm{~N}-\mathrm{m}, 60$
(b) $2 \mathrm{~N}-\mathrm{m}, 40$
(c) $3 \mathrm{~N}-\mathrm{m}, 20$
(d) $4 \mathrm{~N}-\mathrm{m}, 30$

Q 8. A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes
(a) L
(b) L/2
(c) 2 L
(d) $\mathrm{L} / \sqrt{2}$

Q 9. A flywheel of moment of inertia $7.5 \mathrm{~kg}-\mathrm{m}^{2}$ is rotating at 240 revolution per minute; calculate its K.E
(a) 2218 J
(b) 2368 J
(c) 1278 J
(d) 3288 J

Q 10. Two particle A and B are moving as shown in the figure. Their total angular momentum (in $\mathrm{kg}-\mathrm{m}^{2} / \mathrm{s}$) about the point O is

(a) 9.8
(b) zero
(c) 52.7
(d) 37.9

Q 11. A particle of mass 20 g is released with an initial velocity $5 \mathrm{~m} / \mathrm{s}$ along the curve from the point A , as shown in the figure. The point A is at height h from point B . The particle slides along the frictionless surface. When the particle reaches point B, its angular momentum about O will be : (Take $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

(a) $2 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(b) $8 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(c) $6 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
(d) $3 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$

Q 12. A particle P with a mass 2.0 kg has position vector $\mathrm{r}=3.0 \mathrm{~m}$ and velocity $\mathrm{v}=4.0 \mathrm{~m} / \mathrm{s}$ as shown. It is accelerated by the force $=2.0 \mathrm{~N}$. All these vectors lie in a common plane. The angular momentum vector about origin is

(a) $12 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$ out of the plane of the figure
(b) $12 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$ into of the plane of the figure
(c) Zero
(d) $24 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$ into of the plane of the figure

Q 13. Find angular momentum (in $\mathrm{kg}-\mathrm{m}^{2} / \mathrm{s}$) of particle of mass 0.01 kg , position vector \vec{r} $=(10 \hat{\imath}+6 \hat{\jmath})$ meter and moving with a velocity $5 \hat{\imath} \mathrm{~m} / \mathrm{s}$ About the origin
(a) $3 \hat{\imath}$
(b) $-0.3 \hat{k}$
(c) $-20 \hat{k}$
(d) $-3 \hat{k}$

Answer Key

Q. 1 c	Q. 2 c	Q. 3 d	Q. 4 c	Q. 5 a
Q. 6 c	Q. 7 a	Q. 8 d	Q. 9 b	Q. 10 a
Q. 11 c	Q. 12 a	Q. 13 b		

